If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+6r-56=0
a = 2; b = 6; c = -56;
Δ = b2-4ac
Δ = 62-4·2·(-56)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-22}{2*2}=\frac{-28}{4} =-7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+22}{2*2}=\frac{16}{4} =4 $
| 3(2b-1)=-21+5b | | 1=v-3-1 | | 9+m=-8m | | 10m=-70 | | (80+x)(1.4)=80(0.5)+0.9x | | 2x-5(x-4)=-2+4x+1 | | 24x/8=10 | | -21/7n-6/7=-13/7 | | -12+b=-3 | | x+24/8=10 | | 14.3p−32.24=127.92 | | 2x+4(-2x+8)=-4 | | -5.22+18.1n=14.66+15n-15.85 | | 2(7-2x)=20-6x | | 2.5k+3=4.5 | | 6d-5d+2=17 | | 2.5k=3=4.5 | | 2+1,3t=1+1,4t | | x/5-7=3/10 | | 10x-X²=0 | | x+x=2=2x+1=1 | | 2,3(x-4)=1,3(2x-6) | | c+3,5=15 | | 5s-7=12,4 | | 8a-12=-12+10a-2a | | k^2-8k-25=0 | | 3x=x+1=4x-x=10 | | 1,7(14-7p)-2=-2(1,9p+3)6 | | 9=5+5x/54 | | 3x-40+2x+19=180 | | -x+5=x-2x=-4 | | 7/6a+4/3=-1/3 |